The God has created a man in order that he creates that the God fails to do



Monday 18 June 2012

My book: Generalized Hamiltonian Formalism for Field Theory


Generalized Hamiltonian Formalism for Field Theory
(World Scientific, Singapore, 1995 )
G. SARDANASHVILY

Preface

Classical field theory utilizes traditionally the language of Lagrangian dynamics.
The Hamiltonian approach to field theory was called into play mainly for canonical quantization of fields by analogy with quantum mechanics. The major goal of
this approach has consisted in establishing simultaneous commutation relations of
quantum fields in models with degenerate Lagrangian densities, e.g., gauge theories.

In classical field theory, the conventional Hamiltonian formalism fails to be so
successful. In the straightforward manner, it takes the form of the instantaneous
Hamiltonian formalism when canonical variables are field functions at a given instant of time. The corresponding phase space is infinite-dimensional. Hamiltonian
dynamics played out on this phase space is far from to be a partner of the usual Lagrangian dynamics of field systems. In particular, there are no Hamilton equations
in the bracket form which would be adequate to Euler-Lagrange field equations.

This book presents the covariant finite-dimensional Hamiltonian machinery for
field theory which has been intensively developed from 70th as both the De Donder
Hamiltonian partner of the higher order Lagrangian formalism in the framework of
the calculus of variations and the multisymplectic (or polysimplectic) generalization
of the conventional Hamiltonian formalism in analytical mechanics when canonical
momenta correspond to derivatives of fields with respect to all world coordinates,
not only time. Each approach goes hand-in-hand with the other. They exemplify
the generalized Hamiltonian dynamics which is not merely a time evolution directed
by the Poisson bracket, but it is governed by partial dierential equations where
temporal and spatial coordinates enter on equal footing. Maintaining covariance
has the principal advantages of describing field theories, for any preliminary spacetime splitting shades the covariant picture of field constraints.

Contemporary field models are almost always the constraint ones. In field theory,
if a Lagrangian density is degenerate, the Euler-Lagrange equations are underdetermined and need supplementary conditions which however remain elusive in general. They appear automatically as a part of multimomentum Hamilton equations. Thus, the universal procedure is at hand to canonically analize constraint field systems on the covariant finite-dimensional level. This procedure is applied to a number of
contemporary field models including gauge theory, gravitation theory, spontaneous
symmetry breaking and fermion fields.

In the book, we follow the generally accepted geometric formulation of classical
field theory which is phrased in terms of fibred manifolds and jet spaces.

Contents


1 Geometric Preliminary
1.1 Fibred manifolds
1.2 Jet spaces
1.3 General connections

2 Lagrangian Field Theory
2.1 Lagrangian formalism on fibred manifolds
2.2 De Donder Hamiltonian formalism
2.3 Instantaneous Hamiltonian formalism

3 Multimomentum Hamiltonian Formalism
3.1 Multisymplectic Legendre bundles
3.2 Multimomentum Hamiltonian forms
3.3 Hamilton equations
3.4 Analytical mechanics
3.5 Hamiltonian theory of constraint systems
3.6 Cauchy problem
3.7 Isomultisymplectic structure

4 Hamiltonian Field Theory
4.1 Constraint field systems
4.2 Hamiltonian gauge theory
4.3 Electromagnetic fields
4.4 Proca fields
4.5 Matter fields
4.6 Hamilton equations of General Relativity
4.7 Conservation laws

5 Field Systems on Composite Manifolds
5.1 Geometry of composite manifolds
5.2 Hamiltonian systems on composite manifolds
5.3 Classical Berry’s oscillator
5.4 Higgs fields
5.5 Gauge gravitation theory
5.6 Fermion fields
5.7 Fermion-gravitation complex

No comments:

Post a Comment