The file Library6.pdf (3Mb) contains the attached PDF files of my main works on generalization of Noether theorems to an arbitrary Lagrangian system Generalization of the Liouville - Arnold, Nekhoroshev and Mishchenko - Fomenko theorems on action-angle variables of completely integrable, partially integrable and superintegrable Hamiltonian systems to the case of non-compact invariant submanifolds.

**Contents**

G.Giachetta, L.Mangiarotti and G.Sardanashvily, Action-angle coordinates for time-dependent completely integrable Hamiltonian systems,

*J. Phys. A***35**(2002) L439-L445
G.Giachetta, L.Mangiarotti and G.Sardanashvily, Geometric quantization of completely integrable Hamiltonian systems in action-angle coordinates,

*Phys. Lett. A***301**(2002) 53-57
E.Fiorani, G.Giachetta and G.Sardanashvily, Geometric quantization of time-dependent completely integrable Hamiltonian systems,

*J. Math. Phys*.**43**(2002) 5013-5025
E.Fiorani, G.Giachetta and G.Sardanashvily, The Liouville -- Arnold -- Nekhoroshev theorem for non-compact invariant manifolds,

*J. Phys. A***36**(2003) L101-L107
G.Giachetta, L.Mangiarotti and G.Sardanashvily, Jacobi fields of completely integrable systems,

*Phys. Lett. A***309**(2003) 382-386
G.Giachetta, L.Mangiarotti and G.Sardanashvily, Bi-Hamiltonian partially integrable systems,

*J. Math. Phys*.**44**(2003) 1984-1987
G.Giachetta, L.Mangiarotti and G.Sardanashvily, Nonadiabatic holonomy operators in classical and quantum completely integrable systems,

*J. Math. Phys*.**45**(2004) 76-86
E.Fiorani and G.Sardanashvily, Noncommutative integrability on noncompact invariant manifolds,

*J. Phys. A***39**(2006) 14035-14042
G.Giachetta, L.Mangiarotti and G.Sardanashvily, Quantization of noncommutative completely integrable systems,

*Phys. Lett. A***362**(2007) 138-142
E.Fiorani and G.Sardanashvily, Global action-angle coordinates for completely integrable systems with noncompact invariant submanifolds,

*J. Math. Phys*.**48**(2007) 032901
G.Sardanashvily, Superintegrable Hamiltonian systems with noncompact invariant submanifolds. Kepler system,

*Int. J. Geom. Methods Mod. Phys*.**6**(2009) 1391-1420
G.Giachetta, L.Mangiarotti and G.Sardanashvily, Singapore , 2010)

*Geometric Formulation of Classical and Quantum Mechanics*(World Scientific,